If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35c^2=5c
We move all terms to the left:
35c^2-(5c)=0
a = 35; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·35·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*35}=\frac{0}{70} =0 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*35}=\frac{10}{70} =1/7 $
| 7(n+7)=19-8n | | 12x-15=4x(4-5) | | 9+3.5g=11-0.59g | | 9s-13s+-7=15 | | 0.04x-0.2=-0.6 | | -6(1+3n)=-132 | | 14-(n-8)=-40 | | 3x-8-9x=-9-6x | | 2/3(x+1)=6 | | F(x)=x^2+6x+9. | | 5x+-12=2x+-7 | | 11d+104=d-116 | | 8=n+5-2n | | x+4/15=5 | | 8=n+ | | 10x^2+78x+44=0 | | 5x^2+2x-40=0 | | 3x+15÷3=9 | | 5x+3=2x-25 | | 2^(2x+2)=128 | | x/2+x3=10 | | (k+1)^2=40 | | (x+1)(2x-1)+(x+2((x-1)+(2x-1)(-(x+1))=33 | | 8(4)4y=-27 | | 6x−5/8=7 | | 1/4x+2=3/4x | | 6+x/5=-2 | | -1/3+2z=-1/6 | | 5x-19=2x-10 | | 2x-2+135=180 | | x+2+x+3=127 | | (1-p)=(1+p+p+p+p+p) |